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I. Introduction

A spacecraft using solar electric propulsion (SEP) to reach its destination must operate its thrusters for
very long periods of time compared to one using chemical propulsion. Some spacecraft may be required to
thrust almost the entire duration of the transfer to reach their target. A side-effect of this characteristic of
SEP missions is that a spacecraft could be subject to an anomaly or fault that forces it to stop thrusting
when it should be, causing it to drift away from its nominal trajectory. A diagram of this situation is shown
in Figure 1. Because these shut-down events (commonly referred to as safe mode or safing events), are not
uncommon and can be caused by uncontrollable external factors (such as a cosmic ray striking an electronic
component), the spacecraft and trajectory should be designed such that the spacecraft can continue on to
its destination in a reasonable time and propellant expenditure once operations resume.
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Figure 1: A diagram of the missed thrust problem.

To plan missions accounting for the possibility of missed thrust, we need a way of measuring how sensitive
a trajectory is to a thrust outage. Various methods have been used over time. One method defines a missed
thrust margin to be the length of time a spacecraft can coast without thrust and still complete its mission
once it recovers.1 The missed thrust margin varies over the course of the mission, and may be very long at
times that are not so sensitive to thrust outages, and as low as zero at times where thrust is crucial. Another
method defines two quantities—time margin and propellant margin—at any given time in a trajectory that
shows how costly a thrust outage of given length will be in terms of a delay in the arrival date (time margin)
and an increase in propellant expenditure (propellant margin).2 What the two aforementioned methods have

∗Engineer, Flight Path Control Group, Member AIAA
†Systems Engineer, Project System Engineering and Formulation Section, Member AIAA

1 of 11

American Institute of Aeronautics and Astronautics



in common is that they can identify the moments in a trajectory that are most sensitive to a single thrust
outage, and thus can be used to design around a worst-case scenario. For example, the Dawn mission was
required to withstand a thrust outage of up to 28 days and still complete its mission when it recovered.

However, a shortcoming of these methods that we aim to address here is that they do not apply well when
the mission designers wish to examine the effects of multiple thrust outages—a likely real-world scenario.
Both methods must step along the trajectory in some time increment, and at each time simulate thrust
outages of increasing duration. For example, suppose a mission designer wishes to analyze a 1000-day
trajectory at 10-day increments. Doing so would mean at each of these 100 points, repeated simulations
at longer thrust outage durations would be performed, each resulting in a new trajectory. The number of
new trajectories could easily reach into the thousands, and to examine the effect of a second event, each of
those would require another full analysis. Going beyond two events could quickly result in many millions of
trajectories to design, and the whole thing would need to be repeated if there were any other changes to the
nominal trajectory.

A second criticism of enforcing a requirement to survive a single long-duration thrust outage is that such
an approach is inconsistent with way reliability is handled in other aspects of the trajectory and spacecraft
design. For example, chemical missions are designed to carry enough propellant to cover a certain percentage
of scenarios (typically 95–99%) that could result due to uncertainties in the orbit determination and maneuver
execution. A similar approach should be applied to missed thrust for SEP missions.

Here, we present a probabilistic method of analyzing a SEP trajectory by performing a Monte Carlo
simulation, using historical data to model the number and duration of thrust outages a mission can expect.
Our method aims to answer the following questions: when is the latest we can expect our spacecraft to arrive
95% of the time, and how much propellant should we put in the tank to cover 95% of possible scenarios
(or 99%, etc.)? This probabilistic method addresses the shortcomings of the deterministic approaches by
limiting the analysis to missed thrust sequences that are in line with historical data, making the analysis
computationally feasible while keeping the results relevant. Once fully developed, this technique should
help assess the efficacy of methods to design low-thrust trajectories to be inherently more robust to missed
thrust—an area of current research.3,4

II. Statistical Model

A. Introduction to the Dataset

The Jet Propulsion Laboratory, in collaboration with the Goddard Space Flight Center, Ames Research
Center, and Johns Hopkins University Applied Physics Laboratory, has collected a database of safe mode
events from over 20 beyond-Earth missions. This comprehensive database captures each event occurrence
and relevant ancillary data, including destination, mission phase, root cause of the anomaly, and details
encompassing the timeline to fully recover. Various mission classes and types are included in the database,
including Earth-trailing telescopes, Mars missions, planetary explorers such as Cassini and Galileo, and the
SEP missions Dawn and Deep Space 1. In total, the database currently captures nearly 200 unexpected
safing events from missions over the past three decades and continues to grow.5

Fully simulating the cumulative impact of safing events requires modeling of event occurrences and
severity (realized as an inoperability period) of each event over a mission’s life. To better compare data
between missions with flight time durations from months to twenty years, event occurrences are represented
as elapsed time between safing events rather than events per year. Event severity is measured as the total
time to resolve the anomaly, defined as the elapsed time from safing event discovery on the ground to the
execution of the command to exit safe mode. Currently, about 150 of the database records have sufficient
details to begin to reconstruct the recovery timeline.

A standard timeline is defined to provide homogeneity in recovery details between events and missions.
This timeline is shown in Figure 2 and captures each of the phases of discovery, diagnosis, and recovery
from a safing event. The first period is reliant on communications cadence, or the elapsed time between an
event occurrence and the ground subsequently learning the spacecraft has safed. The following periods of
investigation, human factors, and commanding to exit safe mode are defined together as the full recovery
duration. These periods are grouped because most missions in the database have insufficient records to derive
more detailed timelines. Following the safe mode exit, there are periods to restore nominal operations, and if
applicable, restore science operations. In the context of the missed thrust analysis, the vehicle is considered
to be inoperable and not-thrusting from the safe mode event through the completion of restoring nominal
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operations.
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Figure 2: Mission data is recorded for the six timeline milestones, leading to definitions for the recovery
duration and inoperability period.

In the timeline, blue periods are considered to be mission specific and can be levied through requirements
or quantified in tests before launch. The green periods are statistical, derived through the analyses of the
dataset. The orange human factors box, though captured within the broader recovery duration period,
captures the impacts of other non-technical factors, including weekends, days off, recovery urgency, and
project and program risk postures. In the case of the missed thrust analysis, the communications pass
cadence can be opportunistically changed to lower the total inoperability periods at sensitive segments of
the trajectory.

B. Safing Event Model

In the initial investigation of the dataset, all mission events are assumed equal and from the same population,
random and not influenced by elapsed-time-of-flight, and equally severe in cause and recovery time. While
these assumptions simplify the differences between missions and events, the decision to lump all missions
together leads to single, large datasets that can be explored for statistical significance. Fitting techniques
are applied to the time between events and recovery duration datasets to test which statistical distributions
could represent the empirical data. Ultimately, the Weibull distribution was found to provide the best
representation of both datasets, as shown in Figure 3. These plots are shown as cumulative distribution
functions, where the colors anonymously highlight the separate contributions of each mission in the datasets.5
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(b) Elapsed Time to Recover from Safe Mode

Figure 3: Weibull distributions (parameters shown) are fit to both datasets with excellent closeness-of-fit.
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While the Weibull is selected because of the excellent closeness-of-fit to the historic data, it is an ap-
propriate tool for these datasets. The Weibull is a two-parameter statistical distribution commonly used in
reliability and failure engineering, and is given by the probability density function

f(x;λ, k) =

 k
λ

(
x
λ

)k−1
e−(x/λ)

k

x ≥ 0,

0 x < 0.
(1)

The scale parameter, λ, defines the magnitude of the values of the dataset, and the shape parameter, k,
gives insight into the behavior of events in the population. A shape less than 1 indicates the event rate is
decreasing, such as a scenario with high infant mortality, while a shape more than 1 highlights an occurrence
rate that increases over time. When the shape is exactly 1, the failure rate is constant and the Weibull
mathematically reduces to the exponential distribution. In the context of safing events, “perfect repair” is
assumed after each event, making both Weibull fits applicable throughout a candidate mission’s life.

C. Applying the Model to Simulation

The shape and scale parameters enable portability of the safing event dataset independent of the raw data.
To model missed thrust events, safing anomalies can be predicted by a random number generator driven by
the time between events Weibull parameters. Estimating the total missed thrust period requires combining
mission assumptions with the simulated recovery duration. Since safings are assumed to be random in time,
the elapsed time between a safing event and discovery on the ground can be modeled as a uniform distribution
based on the communications pass cadence. The commanding time to restore nominal operations is assumed
to be constant because a mission team is following a pre-determined plan. Additionally, if supported by
the simulation, round-trip-light-time can be factored in as an operations team transmits and waits for
confirmation.

While the Weibull distributions provide valuable insight into modeling and simulating the behaivor of
safing events, there are some challenges to address when applying the results to future mission architectures.
In many of the historic safing events, mission teams indicate there was rarely time pressure to recover the
vehicle as quickly as possible. Often, the vehicle was in a safe state during an extended cruise or stable orbit
that allowed for full diagnosis and analysis of the anomaly. This increases the duration of each recovery
timeline, meaning that the recovery duration Weibull fit presented here may overestimate the true recovery
time if a team is under pressure. However, in the case of the missed thrust analysis on low-thrust missions,
this overestimation provides confidence that a mission will meet a minimum operability rate with a high
degree of certainty. The models also do not account for spacecraft that have tiers of safe modes, where faults
are managed based on their severity, potentially allowing thrusting to continue or for a quicker recovery to
an operable configuration. Future work is continuing on the modeling of the datasets, both revisiting the
initial assumptions and testing methodologies to account for different mission types. A long term goal of the
dataset analysis is to develop a tool to generate tailored Weibull parameters based off a mission’s propulsion
architecture, destination, cost, and other significant factors.

III. Missed Thrust Simulation Method

Using the statistical model for safe-mode events, we are able to take a nominal trajectory and simulate
possible thrust-outage scenarios on that trajectory. In doing so, each outage that occurs in the scenario is
handled in sequence, with later outages occurring on an altered trajectory that has changed from the original
trajectory as a result of prior outages. The following algorithm is employed to process each sample in the
Monte Carlo analysis of N samples:

1. Using the Weibull distribution for time between outages, generate a random sequence of days to the
next outage. For example, a sequence of 40 days, 20 days and 30 days would have outages on days 40,
60, and 90 of the mission.

2. For each outage generated in the previous step, generate the inoperability period, tout with

tout = td + ts + ti, (2)
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where td is the discovery delay, ts is the solution time, and ti is the implementation time. td is a
uniform random variable that can range between 0 up to the number of days between communication
with the spacecraft, typically 1–3 days. td corresponds to the first blue segment in Figure 2. ts is the
time it takes to solve the problem with the spacecraft, and is a Weibull random variable based on the
historical data set. This time corresponds to the green and orange segments of Figure 2. ti is the time
it takes to implement the solution on the spacecraft and begin thrust operations again. It is modeled
as a simple constant chosen by the user.

3. With the nominal trajectory, check if the first outage occurs before the last day of the mission. In
practice, many samples will have the first outage occurring after the last day of the mission, resulting
in no outages at all.

4. If the outage occurs during the mission, simulate a missed thrust by ballistically propagating the state
of the trajectory at the time of the outage for the duration of the outage, tout. If this outage happens
to occur during a coast arc in the trajectory, then the state at the end of the missed thrust propagation
will match that of the nominal trajectory.

5. Starting from the new state, optimize a new trajectory that reaches the target body while minimizing
a weighted objective function that combines final mass and time-of-flight. We minimize the function

J = −mf + ηT, (3)

where η is a user-specified weighting parameter. Setting η = 0 corresponds to pure mass optimization,
while increasing η yields solutions that have lower time-of-flight but use more propellant.

6. Return to Step 3, using the newly designed trajectory and the next outage in the sequence. The new
arrival date is likely later than the original one, increasing the chance of more outages.

The process repeats until the next outage in the sequence occurs after the last day of the mission. At the end,
the spacecraft will have arrived at its destination, however the missed thrust events will generally cause it to
arrive later or having used more propellant than planned. For each sample, we keep track of two measures
of performance: Lateness, l̄, where

l̄ = ta − t∗a (4)

and propellant margin, m̄, where

m̄ =
mp −m∗p
m∗p

. (5)

Here, ta is the arrival epoch and mp is the propellant mass, and the ∗ superscript indicates values for the
nominal trajectory.

Once the Monte Carlo simulation is complete, the result is a dataset of N values for l̄ and m̄. We can
then examine the statistics of that dataset for useful information regarding the trajectory. The quantities
l̄x and m̄x are the values for l̄ and m̄ such that x% of samples had l̄ ≤ l̄x and m̄ ≤ m̄x. In other words,
a spacecraft that launches with a propellant margin of m̄95 should be expected to not exceed its margin
with 95% confidence. m̄95 could be considered analogous to a ∆V 95 in chemical missions. l̄95 would be the
maximum delay in arrival one could expect for a spacecraft with a 95% likelihood. l̄x does not have a good
analogue in chemical missions, which tend to arrive on time or else require a major trajectory redesign in
the event of a failed maneuver.

In addition to bulk information covering the entire dataset, we can examine the outage history of samples
that require very high propellant margins and very long arrival delays. Doing so could provide insight into
which potential outage sequences would be most problematic for the spacecraft and help those designing it
mitigate the risk.

Using the method described here, a mission designer can vary several parameters to see their effect on the
ability of a trajectory to withstand likely missed thrust scenarios. Various methods of designing a trajectory
to be more robust could be tested and compared to a pure mass or time optimal design.

Performing the missed-thrust analysis using the probabilistic method described here provides the trajec-
tory analyst with information that could not be obtained via a deterministic method. First and foremost,
it provides a result for the propellant margin a mission should budget for missed thrust that is based on
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an extensive survey of past missions and naturally includes the effect of multiple thrust outages in one mis-
sion. It also allows mission planners to evaluate the impact of things like communication cadence and safe
mode operations. To examine multiple thrust outages with a deterministic analysis, the mission designer
will either need to make some decisions to limit the scope of the analysis to what he or she believes will
be the most problematic cases or try to analyze every conceivable combination of events. The first route
could result in important scenarios that are never considered, and the second route would quickly grow to
be computationally infeasible.

IV. Results

We apply our method to two example trajectories. In our analysis, both the nominal trajectory and the
post-outage trajectories are computed using the low-thrust tool Mission Analysis Low-Thrust Optimization
(MALTO). MALTO uses a direct method to solve the low-thrust trajectory design problem by approximating
a continuous low-thrust arc with a sequence of small impulsive maneuvers.6 While some fidelity is lost with
this approximation, the deviation from continuous-thrust indirect methods is typically less than 1 kg. Since
several thousand trajectory optimizations are required for each Monte Carlo analysis, the small discrepancy
in the computation is well worth it for decreased run time and a more robust algorithm. However, the Monte
Carlo method presented here is independent of the optimization algorithm used to compute the trajectory
solutions, and it should be possible to use a higher-fidelity tool later in the design process.

A. Example Trajectories

Both example trajectories launch from Earth and reach Mars with v∞ = 0. One trajectory uses two NEXT
thrusters7 as its propulsion system, and the other uses a single HERMeS Hall effect thruster.8 The NEXT and
HERMeS thrusters are both under continuing development by NASA. Relevant details of the two trajectories
are listed in Table 1. We will use the ID number to refer to each trajectory, so Trajectory 1 is the NEXT-
based trajectory. P0 is the available power at 1 AU from the Sun, m0 is the total wet mass at launch, and mp

is the SEP propellant mass. For comparison, Mars Reconnaissance Orbiter, a chemical mission, had a launch
mass of 2180 kg, of which 1149 kg was propellant.9 Dynamically, the key difference between trajectories
1 and 2 is that the HERMeS thruster provides more acceleration, allowing the spacecraft to launch at a
lower C3. Each trajectory is the result of a systems-level optimization that maximizes payload mass, taking
into account parameters such as power system mass and propellant tank mass. One might assume that the
increased propulsion system performance provided by HERMeS would allow for a reduced cost to recover
from a missed thrust. However, because the trajectory is optimized around this performance, another way
to look at it is that the trajectory is more reliant on the SEP system to get to Mars. In that case, missing
any thrust could be more costly. Neither interpretation is better than the other, highlighting the difficulty
in applying intuition to the missed thrust problem.

Table 1: Example Trajectory Characteristics

ID Prop. System P0, kW m0, kg mp, kg TOF, days C3, km2/s2

1 NEXT×2 24.5 3565 261 405 13.2

2 HERMeS×1 30.5 4904 624 410 5.76

B. Monte Carlo Results

For the Monte Carlo analysis, we use 2000 samples for each run. We assume the spacecraft communicates
once per day with the ground, and after diagnosing and producing a fix for the problem, there is a constant 24
hour implementation period for the fix. For the time-between-events Weibull distribution, we use λ = 0.625
and k = 0.871, and for the time to recover Weibuill distribution, we use λ = 2.520 and k = 1.150, as shown
in Figure 3. With these parameters, the units for the time-between-events distribution are years, and the
units for the recovery distribution are days.
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1. Statistical Metrics

The results of a Monte Carlo analysis can be represented with a scatter plot, as in Figure 4. Each point in
the scatter plots is a sample trajectory which reached Mars after recovering from some number of missed
thrust events. Results are shown for both Trajectory 1 (Figure 4a) and Trajectory 2 (Figure 4b), and each
plot represents a Monte Carlo analysis using 2000 samples. The number of events is represented by the
color of the point, with no sample containing more than 8 events, and the lines on the plot represent the
quantiles for each axis. We can see that 95% of the samples require a propellant margin of 17% or less
to reach Mars for trajectory 1, while for trajectory 2, 95% of samples required at most a 9% propellant
margin to recover from thrust outages. For time margin, 95% of the samples reach Mars no more than 98.4
days late for trajectory 1, while that equivalent time margin is 80.8 days for trajectory 2. These results
indicate that trajectory 2, with its more powerful propulsion system, is more robust to thrust outages than
trajectory 1. In Figures 4c and 4d we can find the distribution of the number of thrust outage events for
each trajectory. Both Trajectory 1 and Trajectory 2 have neary identical distributions, with the single most
common outcome being a mission with a single outage. Just under half of samples were subject to two or
more outages, and over 20% of samples had zero outages. These outage count distributions are particular
to the example trajectories; longer missions will tend to have more outages.
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(b) HERMeS, Trajectory 2
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Figure 4: Results of Monte Carlo analysis of with η = 0.5.

The information in plots like Figure 4 is useful during the design of a mission to help make informed
decisions about how much propellant to load on board the spacecraft and how to plan out an operations
schedule. However, it reflects only one relative weighting between mass and time optimality (η from Equa-
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tion 3). To explore this trade, we run the analysis for η = 0.1, 0.3, 0.5, and 1.0 and track m̄95 and l̄95, as
shown in Figure 5. As expected, increasing η (i.e. favoring reduced time-of-flight in the optimization) results
in a higher m̄95 but lower l̄95. In this analysis, η could represent the “exchange rate” between time and
propellant in a given mission. For a mission where it is important for the spacecraft to arrive at the target
before a certain date (e.g. to observe the object under certain lighting conditions or capture a transient
weather phenomenon), time will be more valuable. In that case, mission planners may opt to carry more
propellant margin to ensure the spacecraft will not arrive too late—even in event of several thrust outages.
In contrast, the arrival date may not be as critical for other missions, which might get away with a lower
propellant margin. Plots like Figure 5 can help with making that trade-off.
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Figure 5: Propellant and time margin 95th percentiles are shown for η = 1 (left), η = 0.5 (middle), and
η = 0.1 (right).

2. Trajectory Timeline Plots

One important aspect of missed thrust events is that the effects of the event vary greatly depending on
where in the trajectory it occurs. At one extreme, missed thrusts that happen during coast arcs have no
impact at all on the propellant margin and arrival date. At the other extreme, a missed thrust that happens
during a critical event in the mission, such as a gravity assist, could potentially have a major impact. While
the presence of any sensitive points can found with a deterministic analysis at relatively low computational
cost, we can also find them with the probabilistic analysis by plotting the contribution to m̄ and l̄ from each
individual outage, as shown in Figure 6. In Figure 6, we can see much greater sensitivity to missed thrust
late in the mission, as the spacecraft approaches its rendezvous with Mars.

3. Examining Individual Samples

In addition to gathering bulk statistics on the Monte Carlo results, we can examine individual samples in
the data set to gather more information. An example is shown in Table 2, which is taken from the data from
Trajectory 2 with η = 0.5. For each outage, we list the time at which the outage occurred, as a percentage
of the nominal time of flight, the duration of the sample, and the contribution to m̄ and l̄ resulting from
that event. The sample shown is that which has a propellant margin greater than 95% of the other samples;
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Figure 6: The contribution to m̄ and l̄ from each individual outage event is plotted for Trajectory 1 with
η = 0.5. The color of each dot corresponds to the number of that event in its sequence.

in other words, it is one of the more problematic scenarios for our spacecraft. First, we can see that the
spacecraft was subject to four outages, all coming in the second half of the mission, and with an average
duration of 2.6 days. Three of the outages occurred more than 87% of the way through the mission, which is
on the approach leg to Mars. Indeed, when looking through other samples which required more propellant
and delays to recover from missed thrusts, the characteristic most have in common is one or more outages
close to the end of the nominal mission. This result is in line with previous studies of missed thrust, which
often show greater sensitivity near the end of the transfer. Future work with this data will focus on searching
for patterns in the data set that could alert mission planners to potentially costly thrust outage scenarios
that may not be obvious or intuitive.

Table 2: m̄95 sample for Trajectory 2 with η = 0.5

N Evt. Time, %TOF Duration, d m̄ l̄

1 57.6 4.8 0.000 2.7

2 87.1 1.9 0.014 35.7

3 91.0 1.2 0.057 10.8

4 99.5 2.4 0.024 19.4

Total - 10.3 0.095 68.6

C. Computing Details

To simplify the analysis, we can take advantage of the fact that generating the missed thrust sequences
(Steps 1 and 2 of the method) is independent of simulating their effect on a trajectory. This fact allows us to
generate one set of samples and run them for different conditions. In addition, each sample is independent of
the others, allowing us to run as many in parallel as computing resources allow. The Monte Carlo analyses
in this study were run on a computing cluster with a total of 512 processing cores. However, in practice we
used 120–180 cores at a time, resulting in typical run times in the range of 30 minutes to one hour.
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V. Discussion

A. Possibilities in Recovery Method

Step 5 of the algorithm, in which the trajectory is repaired following the thrust outage, is particularly
important and open to different approaches. The method described here designs a new trajectory that
gets to the destination using a fixed weighting between time-of-flight and final mass for the whole mission.
However, it may be advantageous to handle each event differently depending on where it occurs in the
mission. It could be the case that using one value for η to handle events early in the trajectory could reduce
sensitivity later on. In fact, there is a nearly limitless variety of methods one could use to design the new
trajectory following a thrust outage. For example, it is common for mission designers to put coast arcs in
the trajectory where they otherwise would not appear, with the hope that this will make the trajectory
more robust to thrust outages. During the simulation, if a thrust outage occurs prior to one of these coast
arcs, there could be the option to open up that time to thrusting, or to keep it closed if opening it does
not improve performance for that particular outage. Ultimately, the goal is to simulate the behavior and
decision-making of a mission manager in a missed-thrust scenario. This aspect of the missed thrust problem
is ripe for further research and could be served by other developments in the areas of artificial intelligence
and machine learning.

B. Caution Using Direct Optimization

Many optimization methods take a direct approach to the low-thrust trajectory design by approximating
continuous thrust arcs with a series of small impulsive ∆V s. Such methods are well suited to preliminary
design and broad searches of the design space, and often provide sufficient accuracy with each ∆V spaced
10–15 days apart. However, if using the method presented here with such a trajectory, it is important
to space the ∆V s much closer together—around one day apart. If the impulses are spaced too far apart,
then the simulated thrust outages, which are typically only 2–3 days in duration, will likely occur between
impulses and seemingly have no effect on the trajectory. Unfortunately, using a much tighter grid spacing
results in more control variables and computation time for each trajectory redesign.

VI. Conclusion

We have introduced a Monte Carlo analysis that assesses the impact of missed thrust on a low-thrust
trajectory using recorded mission data to simulate likely thrust outage scenarios. Modeling time between safe
mode events and recovery durations as Weibull distributions provides a historical foundation for quantifying
the impact of safing events on candidate mission architectures. This probabilistic method allows mission
planners to make informed decisions about the propellant margin and time margin to use when designing
a mission. Unlike deterministic methods that simulate missed thrust events at regular intervals in the
trajectory, the Monte Carlo method naturally handles multiple-outage scenarios. We applied this method
to two example trajectories and assessed different relative weighting strategies between mass-optimal and
time-optimal recovery trajectories. This analysis found that a direct trade is possible between time and mass
when deciding on a recovery strategy for missed thrust.

The Monte Carlo analysis allows mission planners to make informed decisions about the propellant margin
and time margin to use when designing a mission. To help in that decision making, we have defined the
metrics m̄x and l̄x to serve as probabilistic propellant and time margins, respectively. We propose that mission
designers and spacecraft engineers use these quantities when setting requirements for a mission. In addition
to setting margin policies for the mission, the Monte Carlo analysis can provide insight into which points in
the trajectory are most susceptible to missed thrust, and may highlight particular sequences of outages that
could lead to a large delay or propellant expenditure. We hope that by continuing the development of this
analysis technique, future SEP missions can avoid carrying too much or too little margin, and increase the
odds of mission success.
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